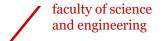


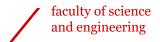
- 1

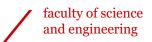

Research projects for MSc in Chemical Engineering @ RaffaLab

Dr. Patrizio Raffa Assistant Professor Polymeric Products

> RUG page: https://www.rug.nl/staff/p.raffa/ Research group page: www.raffalab.com

Email: p.raffa@rug.nl



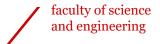

- > Product oriented topics
 - Synthesis of new polymeric products
 - Characterization
 - Study of properties
- > Not available at the moment
 - New intake from February/March 2021
 - Max 2 students for this a.a.

- > Amphiphilic polymers
 - For enhanced oil recovery
 - For smart materials (sensing/actuation/drug delivery)
 - Anti-bacterial / anti-stain coatings
- > Bio-based materials
 - From sugar industry side streams
 - Biodegradable coatings
 - From starch (also in scCO₂)
 - Adhesives, emulsifiers, coatings
 - From citric acid and glycerol
 - Super Absorbent Polymers

Amphiphilic polymers (Polymeric surfactants)

block structures

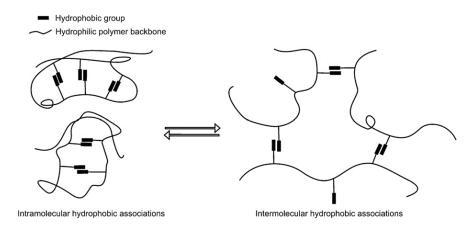
e.g.: poloxamers

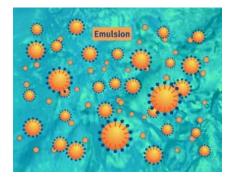


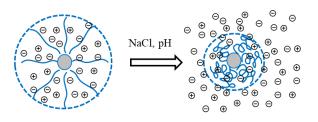
statistic structures

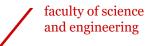
e.g: hydrophobically modified HPAM

R = /////////



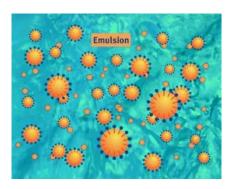


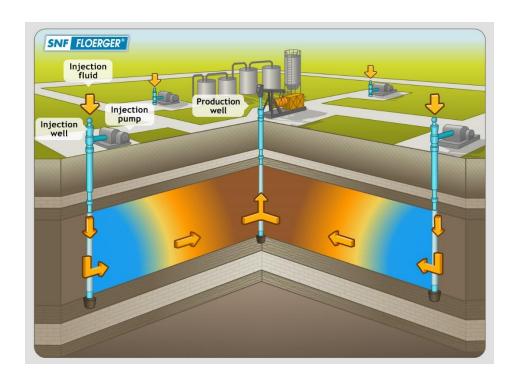



Rheology (viscosity) control

IFT decrease and Emulsion stability

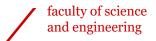
Responsive behavior

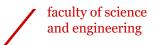




Amphiphilic Polymers

for EOR





Amphiphilic Polymers

for EOR

$$O_{HN} \sim SO_3^ S_S \sim COOH$$
 $S_S \sim COOH$
 $S_S \sim COOH$

- Synthesis
- Properties water solution
- Possible evaluation in EOR (by Shell)

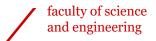
NHR

Amphiphilic Polymers

For smart materials

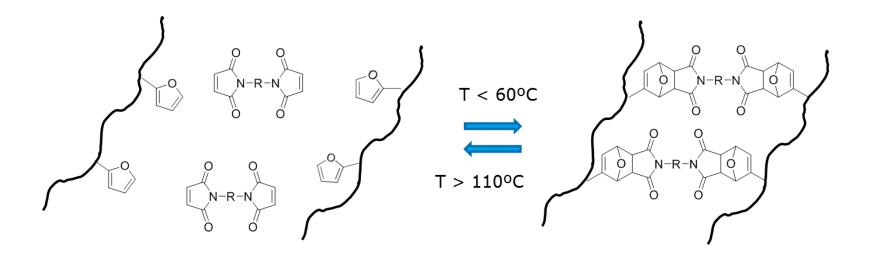
Possibility for further functionalization

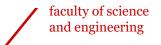
Stimuli-responsive polymers


- "smart" EOR
- sensors

 H_2O, H^+

Fluorescent probe Mechanochromic


Responsive to pH, salinity, Temperature



For smart materials

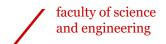
Reversible smart hydrogels

- Drug delivery
- Tissue eng

| 10

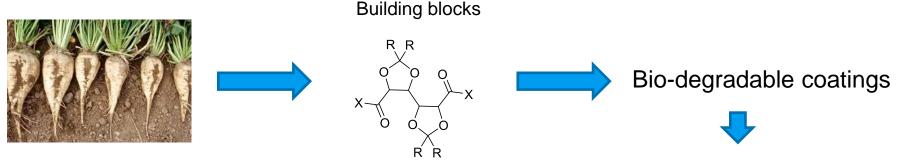
Anti-bacterial / anti-stain coatings

Co-supervised by Prof. Cor Koning, DSM (Covestro)



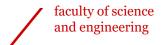
Cationically charged polyesters

PU dispersions



From sugar industry side stream

Co-supervised by Cor Koning, DSM (Covestro) In collaboration with Royal Cosun


aminoacids

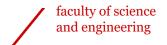
Example applications:
Crop protection
Controlled release fertilizers

For people with good taste in music PhD supervisor: Jesse Jongstra

From starch

1. In scCO₂

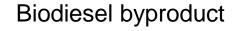
2. With fatty acid derivatives


Hydrophobically modified (coatings, adhesives, emulsifiers)

For people with "samurai" powers PhD supervisor: Mattia Lenti Collaboration with Dynaplak

Cross-linked coatings

Co-supervised by Cor Koning Collaboration with AVEBE



For super adsorbent polymers

Co-supervised by Cor Koning, DSM (Covestro)

